Demographic, Clinical, and Microbial Aspects of Chronic and Aggressive Periodontitis in Colombia: A Multicenter Study

Gloria Inés Lafaurie,* Adolfo Contreras,† Alexandra Barón,* Javier Botero,† Isabel Mayorga-Fayad,* Adriana Jaramillo,† Astrid Giraldo,† Ferney González,§ Sergio Mantilla,‖ Alejandro Botero,¶ Luz Helena Archila,‖ Antonio Díaz,# Tatiana Chacón,** Diana Marcela Castillo,* Marisol Betancourt,† Maria Del Rosario Aya,* and Roger Arce †

Background: The microbial profile of periodontal disease varies among different human populations. This study evaluated the demographic, clinical, and microbiologic aspects of periodontitis in a multigeographic sample in Colombia.

Methods: Three hundred twenty-five patients with chronic periodontitis (CP), 158 patients with aggressive periodontitis (AgP), and 137 healthy-gingivitis controls from five regions of the country were studied. Clinical, microbial, and sociodemographic data were collected. Microbiologic identification was performed using polymerase chain reaction 16S rRNA gene on pooled subgingival samples, and the presence of Gram-negative enteric rods was evaluated by culture. Bivariate and multivariate logistic regression analyses were conducted.

Results: Porphyromonas gingivalis occurred in 71.5% of individuals with periodontitis, Tannerella forsythensis occurred in 58.5%, Campylobacter rectus occurred in 57.5%, Actinobacillus actinomycetemcomitans occurred in 23.6%, and enteric rods occurred in 34.5%. P. gingivalis was more common in CP and AgP than controls. A. actinomycetemcomitans was increased in AgP compared to controls and patients with CP. T. forsythensis, C. rectus, and Eikenella corrodens had a low presence in the West Pacific and Central regions, and enteric rods were increased in the Central region (P < 0.05). Other sociodemographic factors were not associated with these microorganisms.

Conclusions: Geographic regions do not influence the microbiota, but the microbiota may vary by geographic region. P. gingivalis, T. forsythensis, and C. rectus are the most prevalent periodontopathic microorganisms in Colombia. A. actinomycetemcomitans was more common in AgP, and a large percentage of the population studied had enteric rods in the subgingival plaque. J Periodontol 2007;78:629-639.

KEY WORDS
Actinobacillus actinomycetemcomitans; chronic periodontitis; Gram-negative rods; periodontitis; Porphyromonas gingivalis.

* Basic Oral Research Unit Institute, El Bosque University, Bogotá, Colombia.
† Periodontal Medicine Group, Valle University, Cali, Colombia.
‡ School of Dentistry, Health Science Institute, Medellin, Colombia.
§ School of Dentistry, Metropolitana University, Barranquilla, Colombia.
‖ School of Dentistry, Santo Tomas University, Bucaramanga, Colombia.
¶ School of Dentistry, Antioquia University, Medellin, Colombia.
School of Dentistry, Cartagena University, Cartagena, Colombia.
** School of Dentistry, Autónoma de Manizales University, Manizales, Colombia.
aggressive periodontitis among various populations.8,13-16 Important differences also are observed regarding the colonization of specific microorganisms in some geographic areas, such as the high colonization of \textit{A. actinomycetemcomitans} in Chinese and Korean populations17-19 and the presence of enteric rods in patients with periodontitis in developing countries.8,20-22 These differences may have an important influence on periodontal therapy and may be associated with ethnic aspects, dietary habits, use of over-the-counter antimicrobials, development level, and sanitation conditions.

Colombia is a multicultural country with very large geographic, climatic, cultural, and socioeconomic differences. These variations warrant the need to evaluate the epidemiological behavior of periodontal disease, taking into account the various geographic regions that constitute the territory. The National Study on Oral Health (ENSAB III)23 indicated that \textasciitilde{}50\% of the Colombian population \(>35\) years of age had loss of attachment, and generalized periodontal disease was present in 30\% of these adults. In terms of severity, 14\% of the population close to \(35\) years of age had moderate to severe loss of attachment; this increased to 40\% at 60 years of age. This study demonstrated that there were significant differences in the prevalence and severity of periodontal disease among regions and suggested the need for an evaluation of the factors associated with these differences.

Few studies have been able to evaluate large population samples and the influence of sociodemographic factors on the prevalence of the most important microorganisms associated with periodontitis. Alpagot et al.24 and Sirinian et al.25 compared these variables among ethnic groups in the United States, a country with a very high immigration rate; however, there are no reports from countries with low immigration rates that allow for the establishment of differences between regions, cultures, and socioeconomic levels and their effects on the composition of the periodontal microflora. The purpose of this study was to report on the clinical, microbial, and sociodemographic aspects of patients with chronic and aggressive periodontal disease in Colombia.

MATERIALS AND METHODS

Study Population

Six hundred and twenty patients were evaluated: 325 patients with chronic periodontitis (CP), 158 patients with aggressive periodontitis (AgP), and 137 healthy controls. These patients attended the clinics of the schools of dentistry at the El Bosque University (Bogotá DC), Santo Tomas University (Bucaramanga: East region), Valle University (Cali: West Pacific region), Metropolitana University (Barranquilla: North Atlantic region), Cartagena University (Cartagena: North Atlantic region), Antioquia University (Medellin: Central region), Health Science Institute (Medellin: Central region), and Autonoma de Manizales University (Manizales: Central region) and were seen in the private practices of periodontists who participated in the study between July 2003 and November 2005.

Exclusion criteria included diabetes, periodontal therapy during the last year, and the use of antimicrobials or non-steroidal anti-inflammatory drugs in the 6 months before clinical examination and sample collection. This study was approved by the institutional review board of each university, and all participants signed a written consent form.

Clinical Evaluation

Medical history and clinical and radiographic examination were conducted for each patient. A full periodontal examination was carried out by periodontists from the different universities. The diagnoses of CP and AgP were made based on criteria defined at the workshop sponsored by the American Academy of Periodontology (AAP) in 1999.26 Individuals with varying degrees of gingival inflammation but without periodontal pockets were used as controls. The following clinical parameters were recorded: probing depth (PD), clinical attachment level (CAL), and percentage of sites with bleeding on probing (BOP). A marked probe† was used in all instances. All clinical researchers underwent a calibration session on the diagnosis criteria examining 15 patients, including clinical history, radiographs, laboratory examinations, clinical photographs, and a later discussion. Calibration exercises yielded an agreement \(\geq 91\%\) for PD and \(\geq 82\%\) for CAL.

Sociodemographic Factors

Sociodemographic data included region (Fig. 1), age (years), gender (female/male), race (mixed ethnicity/black), and socioeconomic status (low, medium, or high) according to the classification used by the Department of National Planning, which is based on the housing infrastructure and is adopted by public service institutions for all regions in Colombia.27

Microbial Sampling

Microbial sampling on periodontitis patients was performed on pockets \(>5\) mm. The deepest six pockets were selected for patients with periodontitis, whereas one site in each sextant was chosen for control patients. After removing supragingival plaque with curets and isolating the area with cotton pellets, two paper points were inserted into each periodontal pocket for 20 seconds. One paper point from each pocket was transferred to an empty sterile tube to obtain a pool of samples for polymerase chain reaction (PCR) processing and identification of \textit{P. gingivalis},

\[\text{UNC-15, Hu-Friedy, Chicago, IL.}\]
A. actinomycetemcomitans, T. forsythensis, E. corrodens, C. rectus, P. intermedia, and P. nigrescens. The other paper point was transferred to a tube with Viability Medium Göteborg Anaerobically (VMGA) III medium for the identification of enteric rods. All samples were labeled properly and sent immediately to the reference laboratories (Oral Microbiology Labs, Basic Oral Research Unit Institute, Universidad El Bosque, and Universidad del Valle) by certified mail. All samples were processed within 48 hours. Laboratory techniques for PCR were calibrated. A protocol for extracting DNA was defined, and the reproducibility in conducting the technique reached 100% agreement between the laboratories. Culture techniques for the identification of enteric rods also were calibrated among the reference laboratories.

Microbiologic Analysis

PCR. PCR was performed as described by Ashimoto et al.28 and Saiki et al.29 P. gingivalis American Type Culture Collection (ATCC) 33277, C. rectus ATCC 33238, T. forsythensis ATCC 43037, E. corrodens ATCC 23834, A. actinomycetemcomitans ATCC 29522, P. intermedia ATCC 25611, and P. nigrescens ATCC 33563 reference strains were used. P. gingivalis was identified by the presence of an amplified product in the 404-base pair (bp) band, C. rectus by an amplified product in the 598-bp band, T. forsythensis by an amplified product in the 641-bp band, E. corrodens by an amplified product in the 688-bp band, P. intermedia by an amplified product in the 575-bp band, and P. nigrescens by an amplified product in the 804-bp band. The primers used were the ones described by Ashimoto et al.,28 which were selected with the assistance of the Ribosomal Database Project program.

Isolation of Gram-negative enteric rods by culture. For the isolation of enteric bacteria, MacConkey agar was used and incubated in aerobic atmosphere at 37°C for 24 to 48 hours. A Gram stain was performed on colonies that grew on MacConkey agar medium for verification.

Statistical Analysis

Univariate and bivariate analyses were conducted to test the distribution of the different variables (frequency distribution for categorical variables and mean, median, and standard deviation for continuous predictors) and the association between bacterial profiles, sociodemographic characteristics, and clinical parameters. Demographic information included region, age (<30 years/≥30 years), gender (female/male), socioeconomic status (low, medium, or high), smoker (yes/no), type of dental practice (public/private), and race (mixed ethnicity/black). Clinical information included PD (shallow, moderate, or deep) and CAL (low, moderate, or severe). Depending on the nature of the variables, statistical tests used to assess bivariate associations included χ^2, Fisher exact test, and analysis of variance. All variables that reached a significance level <0.05 in the bivariate analyses were used to model the presence/absence of periodontopathic microorganisms. Multivariate logistic regression models were fitted using P. gingivalis, T. forsythensis, A. actinomycetemcomitans, C. rectus, and E. corrodens as dependent variables. Statistical significance was set at $P<0.05$ for all tests at the modeling stage.

RESULTS

Table 1 depicts the sociodemographic aspects of the studied sample. The average age was 37.4 years, with significant differences between the patient groups and the controls ($P<0.05$). Patients with CP were older than patients with AgP. Controls had a higher average age than those with AgP but lower than CP patients. In most regions, more women than men and more individuals from low and middle socioeconomic levels were evaluated.

Analyses of clinical indicators were person based and not site based, expressed as the average of all sites examined clinically. There were significant differences
in all clinical parameters between patients with periodontitis and controls \((P<0.0001)\). There were no differences between the periodontitis groups, except for PD of sites selected for microbiologic evaluation, and BOP, which was more severe in AgP \((P<0.05)\). The frequency of smokers was similar for AgP and control groups, and there was a higher frequency of smokers among CP patients, which was significantly different from the control group \((P<0.05)\) (Table 2).

The distribution of bacteria among different regions in all subjects is shown in Figure 2. With the exception of \(P.\) gingivalis and \(P.\) intermedia, there were significant differences in all of the bacteria among regions. The biggest differences were observed for \(T.\) forsythensis, \(C.\) rectus, and \(E.\) corrodens \((P<0.0001)\). A actinomyctetemcomitans and \(P.\) nigrescens also showed differences among regions \((P<0.05)\).

Figure 3 shows the percentage distribution of microorganisms studied among the different diagnoses. \(P.\) gingivalis was the most common \((71.5\%)\) bacteria in patients with periodontitis. Specifically, it was found in 68.2% of CP patients, 74.6% of AgP patients, and 14.5% of controls. \(T.\) forsythensis was found in 58.5% of CP patients, 58.1% of AgP patients, and only 3.1% of controls. \(C.\) rectus was present in 57.5% of patients with periodontitis and 22.7% of controls; lower

Table 1.

Demographic Characteristics by Clinical Diagnosis

<table>
<thead>
<tr>
<th>Variable</th>
<th>CP</th>
<th>AgP</th>
<th>Healthy/Gingivitis</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects (N)</td>
<td>325</td>
<td>158</td>
<td>137</td>
<td>620</td>
</tr>
<tr>
<td>Age (years, mean ± SD)</td>
<td>45.6 ± 10.6*</td>
<td>28.0 ± 6.8*</td>
<td>28.9 ± 10.3*</td>
<td>37.4 ± 12.9</td>
</tr>
<tr>
<td>Gender (%)</td>
<td>F: 53.5</td>
<td>M: 46.5</td>
<td>F: 62.0</td>
<td>M: 38.0</td>
</tr>
<tr>
<td>Socioeconomic status (%)†</td>
<td>1: 33.9</td>
<td>2: 55.7</td>
<td>3: 10.4*</td>
<td>1: 44.3</td>
</tr>
<tr>
<td>Race (%)</td>
<td>M: 95.4</td>
<td>B: 4.6‡</td>
<td>M: 96.2</td>
<td>B: 3.8</td>
</tr>
<tr>
<td>Type of practice (%)</td>
<td>Pu: 81.2</td>
<td>Pr: 18.8</td>
<td>Pu: 88.0</td>
<td>Pr: 12.0‡</td>
</tr>
</tbody>
</table>

* \(M=\) mixed; \(B=\) black; \(Pu=\) public; \(Pr=\) private.

* \(P\) values derived from \(t\) or \(\chi^2/Fisher\) exact tests. Unless otherwise noted, comparisons had no statistical significance.

† \(1=\) low; \(2=\) middle; \(3=\) high.

‡ Comparison versus healthy \((P<0.05)\).

Table 2.

Clinical Indicators and Smoking Status by Diagnosis

<table>
<thead>
<tr>
<th>Variable</th>
<th>CP</th>
<th>AgP</th>
<th>Healthy/Gingivitis</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects (N)</td>
<td>325</td>
<td>158</td>
<td>137</td>
<td>620 (total N)</td>
</tr>
<tr>
<td>PD (mm) (mean ± SD)</td>
<td>3.9 ± 1.1*</td>
<td>3.8 ± 0.9*</td>
<td>1.8 ± 0.4</td>
<td>3.4 ± 1.3</td>
</tr>
<tr>
<td>CAL (mm) (mean ± SD)</td>
<td>4.2 ± 1.6*</td>
<td>4.0 ± 1.4*</td>
<td>1.0 ± 1.2</td>
<td>3.4 ± 1.9</td>
</tr>
<tr>
<td>PD sites sampled (mean ± SD)</td>
<td>7.5 ± 1.1*†</td>
<td>7.9 ± 1.5*†</td>
<td>2.1 ± 0.6</td>
<td>6.3 ± 2.7</td>
</tr>
<tr>
<td>BOP (% positive)</td>
<td>53.50*†</td>
<td>59.30*†</td>
<td>20.00</td>
<td>48.00</td>
</tr>
<tr>
<td>Smoking status (% positive)</td>
<td>18.70†</td>
<td>14.70</td>
<td>9.20</td>
<td>15.60</td>
</tr>
</tbody>
</table>

* \(P\) values derived from \(t\) or \(\chi^2/Fisher\) exact tests. Unless otherwise noted, comparisons had no statistical significance.

† Comparison chronic versus aggressive \((P<0.05)\).

‡ Comparison versus healthy \((P<0.05)\).
levels of *E. corrodens*, *P. intermedia*, and *P. nigrescens* were observed in periodontitis patients. *A. actinomycetemcomitans* was present in 23.6% of patients with periodontitis: 16.5% of CP patients and 30.1% of AgP patients. Among patients with chronic and aggressive periodontitis and controls, differences were observed for all bacteria, except *P. nigrescens*. Between both periodontitis groups, differences were found only for *A. actinomycetemcomitans*, *C. rectus*, and *P. intermedia* (*P* < 0.05). There was a higher frequency of *A. actinomycetemcomitans* in patients with AgP; however, these differences were not significant between the localized and generalized forms of the disease (*P* > 0.05). There were no differences in the frequency of microorganisms based on race, smoking status, gender, and socioeconomic status.

Enteric rods were present in 29.8% of all patients, including controls. In patients with periodontitis, a prevalence of 34.5% was observed. There were no differences between CP, AgP, and controls, except for the localized form of AgP, which showed significant differences compared to the other groups studied (*P* < 0.05). The presence of enteric rods was similar among regions; however, the Central region showed a significant difference compared to other regions (*P* < 0.05; Fig. 2). Age, gender, socioeconomic status, smoking status, and race were not associated with the presence of enteric rods (Table 3).

Table 3 shows the bivariate analysis for *P. gingivalis*, *A. actinomycetemcomitans*, *T. forsythensis*, *C. rectus*, *E. corrodens*, *P. intermedia*, *P. nigrescens*, and enteric rods. Diagnosis and PD were some of the variables that were associated strongly with the presence of these microorganisms (*P* < 0.0001); region, age, socioeconomic status, and CAL were associated with some bacteria and were included in the multivariate analysis. Some variables, such as gender, race, and smoking status, did not show any association and were excluded from further logistic regression analyses.

A. actinomycetemcomitans showed an association with AgP. This bacteria was 6.4 times higher in individuals who had a diagnosis of AgP compared to healthy subjects after adjusting for other variables in the model (odds ratio [OR], 6.40; 95% confidence interval [CI]: 1.77 to 11.6) and 2.95 times more frequent in individuals with CP (OR, 2.95; 95% CI: 0.71 to 12.3). When the reference level was modified from controls to CP, *A. actinomycetemcomitans* was two times more frequent in the AgP group compared to...
the CP group (OR, 2.17; 95% CI, 1.12 to 4.19) (data not shown). Moreover, individuals who had deeper pockets also were significantly more likely to have A. actinomycetemcomitans (OR, 6.50; 95% CI, 1.86 to 22.61) (Table 4). P. gingivalis was associated with the presence of periodontitis (CP: OR, 10.16; 95% CI, 3.39 to 30.50; AgP: OR, 9.45; 95% CI, 3.15 to 28.37). PD had a weak association with P. gingivalis (for pockets of moderate and severe depth) compared to shallow pockets. Other variables did not show any association (Table 4).

Individuals from the Eastern region were more likely to have T. forsythensis (OR, 2.18; 95% CI, 0.96 to 4.95). The West Pacific region had a lower frequency of T. forsythensis (OR, 0.37; 95% CI, 0.20 to 0.71). There was no association observed between T. forsythensis and PD (Table 4).

C. rectus was more prevalent in CP (OR, 6.13; 95% CI, 2.21 to 17.00) and AgP (OR, 5.50; 95% CI, 1.95 to 15.51), and its frequency was lower in the Central (OR, 0.35; 95% CI, 0.20 to 062) and West Pacific regions (OR, 0.41; 95% CI, 0.22 to 0.74). The same was observed for E. corrodens for both regions (OR, 0.35; 95% CI, 0.19 to 0.66 and OR, 0.24; 95% CI, 0.11 to 0.49, respectively) (Table 4). P. intermedia and P. nigrescens did not show important differences among regions after adjustment of the regression model (data not shown).

DISCUSSION

The 1999 AAP conference on periodontal disease established that there are large differences in the composition of subgingival plaque between CP and AgP. The conference also established the association between AgP and high levels of A. actinomycetemcomitans. The results from this study showed that P. gingivalis, T. forsythensis, and E. corrodens were isolated more frequently among patients with both CP and AgP in Colombia. P. gingivalis and T. forsythensis have been associated with loss of attachment in patients with periodontitis.30-32 P. gingivalis is highly prevalent among subjects with CP. Using culture techniques, ranges of 12.8% to 86.6% were reported in different populations.7,8,10,17,33-35 The use of PCR for the identification of P. gingivalis showed ranges of 28% to 97.4%.18,28,36-38 In AgP, the frequency of detection of P. gingivalis varied between 62% and 100% in different populations.39-42 This microorganism was the most frequently found in patients with CP (68.2%) and AgP (74.6%) in the currently studied population. This is similar to the frequencies reported in other South American studies targeting Chileans43,44 and Brazilians.45 P. gingivalis did not show large differences among regions we studied or with respect to other variables assessed. P. gingivalis showed an association with mean PD, similar to the findings reported by other investigators.7,12,46

The isolation range of T. forsythensis in patients with CP varied between 40% and 42% using culture techniques;8,9 the prevalence increased to 73% to 96% when PCR and DNA probes were used.18,47 The frequency for this Colombian population was slightly lower than frequencies reported in other studies that used PCR. However, the East region showed a high
frequency of this microorganism compared to other regions. This microorganism was highly variable among regions and did not show any association with PD. Future studies should be conducted to establish more precisely the microorganism’s behavior in Colombian patients with periodontitis.

C. rectus showed a high frequency in the population with periodontitis and among controls. Lately, the importance of chronic infections associated with *C. rectus* has been of interest. Recently, Buduneli et al.48 reported that *C. rectus* may have a role in increasing the risk for preterm low birth weight. Yeo et al.49 found that remote subcutaneous maternal *C. rectus* infection increased fetal growth restriction in a mouse model. Offenbacher et al.50 also found that maternal *C. rectus* infection induced placental inflammation as well as concomitant increases in fetal brain interferon-γ in a mouse model.

In the present study, *A. actinomycetemcomitans* was observed two times more frequently in AgP than in CP. The levels of *A. actinomycetemcomitans* reported in periodontitis vary among populations. In AgP, *A. actinomycetemcomitans* varied between 3% and 53% among Europeans and Americans,40-42 Japanese,39,51 and Chileans,43,44 isolates of *A. actinomycetemcomitans* in CP varied between 8% and 57% in Americans and Europeans7,28,37,38,52-54 and reached 28.5% to 40% in African countries.8,10,33 The highest frequencies were reported in Chinese and Koreans, with a range between 63% and 83%.18,34,55 This study demonstrated that the presence of *A. actinomycetemcomitans* varied between 16.5% for CP and 30.1% for AgP. These values are within the range of North American, European, and other South American populations,44 but are lower than among Asians and Africans.

Sociodemographic variables did not influence the presence of *A. actinomycetemcomitans*. A significant association was observed between this microorganism, AgP, and PD, whereas a weaker association was observed with CP. A systematic review conducted by Mombelli et al.16 showed that the presence or absence of *A. actinomycetemcomitans* did not discriminate between patients with AgP and CP. *A. actinomycetemcomitans* has shown a low response to scaling and root planing.56,57 Several antimicrobial protocols administered with periodontal therapy have been implemented for the elimination of the periodontal pockets associated with *A. actinomycetemcomitans*;58-62 therefore, it was important to study its presence in this population.

A great percentage of the population showed the presence of enteric rods in subgingival plaque, including the population without periodontitis. Similar frequencies were reported among Brazilians.21,46 High levels of resistance to antimicrobials used in periodontal treatment have been reported for enteric rods.21,63,64 Further studies are required in order to clarify the effect of enteric rods on clinical parameters and response to periodontal treatment.

Table 3.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Aa</th>
<th>Pg</th>
<th>Tf</th>
<th>Ent Rod</th>
<th>Cr</th>
<th>Ec</th>
<th>Pn</th>
<th>Pi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socioeconomic status</td>
<td>0.035†</td>
<td>0.077</td>
<td>0.183</td>
<td>0.36</td>
<td>0.51</td>
<td>0.42</td>
<td>0.5</td>
<td>0.28</td>
</tr>
<tr>
<td>Type of practice</td>
<td>0.447</td>
<td>0.128</td>
<td>0.01†</td>
<td>0.35</td>
<td>0.49</td>
<td>0.08</td>
<td>0.86</td>
<td>0.7</td>
</tr>
<tr>
<td>Region</td>
<td>0.004†</td>
<td>0.309</td>
<td>0.0002*</td>
<td><0.0001*</td>
<td><0.0001*</td>
<td><0.0001*</td>
<td>0.03†</td>
<td>0.17</td>
</tr>
<tr>
<td>Diagnosis</td>
<td><0.0001*</td>
<td><0.0001*</td>
<td><0.0001*</td>
<td>0.7</td>
<td><0.0001*</td>
<td><0.0001*</td>
<td>0.87</td>
<td><0.0001*</td>
</tr>
<tr>
<td>Gender</td>
<td>0.081</td>
<td>0.312</td>
<td>0.347</td>
<td>0.41</td>
<td>0.97</td>
<td>0.05*</td>
<td>0.49</td>
<td>0.77</td>
</tr>
<tr>
<td>Age</td>
<td>0.385</td>
<td>0.002†</td>
<td><0.0001*</td>
<td>0.26</td>
<td>0.001†</td>
<td>0.06</td>
<td>0.46</td>
<td>0.01</td>
</tr>
<tr>
<td>Race</td>
<td>0.248</td>
<td>0.1</td>
<td>0.741</td>
<td>0.84</td>
<td>0.49</td>
<td>0.11</td>
<td>0.1</td>
<td>0.02</td>
</tr>
<tr>
<td>Smoker</td>
<td>0.518</td>
<td>0.109</td>
<td>0.103</td>
<td>0.74</td>
<td>0.75</td>
<td>0.1</td>
<td>0.11</td>
<td>0.006†</td>
</tr>
<tr>
<td>PD</td>
<td><0.0001*</td>
<td><0.0001*</td>
<td><0.0001*</td>
<td>0.94</td>
<td><0.0001*</td>
<td><0.0001*</td>
<td>0.72</td>
<td>0.008†</td>
</tr>
<tr>
<td>PD sites sampled</td>
<td>0.001†</td>
<td><0.0001*</td>
<td><0.0001*</td>
<td>0.29</td>
<td><0.0001*</td>
<td><0.0001*</td>
<td>0.56</td>
<td><0.0001*</td>
</tr>
<tr>
<td>CAL</td>
<td>0.0006†</td>
<td><0.0001*</td>
<td><0.0001*</td>
<td>0.13</td>
<td><0.0001*</td>
<td><0.0001*</td>
<td>0.93</td>
<td><0.0001*</td>
</tr>
</tbody>
</table>

Aa = A. actinomycetemcomitans; Pg = P. gingivalis; Tf = T. forsythensis; Ent Rod = enteric rods; Cr = C. rectus; Ec = E. corrodens; Pn = P. intermedia; Pi = P. nigrescens.

All variables are categorized based on levels used for logistic regression models. *P* values derived from the χ²/Fisher exact test.

* *P* <0.0001.
† *P* <0.05.
The microbial component in patients with chronic and aggressive periodontitis in this Colombian population was not influenced by socioeconomic status, age, gender, or race. Sirinian et al.\(^25\) found differences among whites, Hispanics, and Asian-Americans; length of time the parents had lived in the United States; education level of the mother; length of time since last dental visit; and gender. In another study,

Table 4.

Logistic Regression Models for Evaluation of the Effect of Various Factors on the Presence of Bacteria

<table>
<thead>
<tr>
<th>Microorganisms Effect</th>
<th>Aa OR 95% CI</th>
<th>Pg OR 95% CI</th>
<th>Tf OR 95% CI</th>
<th>Cr OR 95% CI</th>
<th>Ec OR 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 ≤30 1 versus 0</td>
<td>0.97</td>
<td>0.60</td>
<td>1.02</td>
<td>1.03</td>
<td>1.08</td>
</tr>
<tr>
<td>1 >30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.51-1.88</td>
<td>0.31-1.09</td>
<td>0.55-1.89</td>
<td>0.60-1.76</td>
<td>0.58-2.00</td>
</tr>
<tr>
<td>Socioeconomic status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 = low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 = medium 2 versus 1</td>
<td>1.20</td>
<td>1.37</td>
<td>0.92</td>
<td>1.09</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td>0.73-1.97</td>
<td>0.87-2.18</td>
<td>0.59-1.43</td>
<td>0.71-1.66</td>
<td>0.70-1.75</td>
</tr>
<tr>
<td>3 = high 3 versus 1</td>
<td>0.40</td>
<td>2.20</td>
<td>0.62</td>
<td>0.73</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td>0.14-1.15</td>
<td>0.57-2.51</td>
<td>0.29-1.31</td>
<td>0.37-1.45</td>
<td>0.33-1.52</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 = Bogotá</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 = East 2 versus 1</td>
<td>1.43</td>
<td>1.40</td>
<td>2.18</td>
<td>0.85</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td>0.66-3.10</td>
<td>0.65-3.04</td>
<td>0.96-4.95</td>
<td>0.43-1.68</td>
<td>0.59-2.26</td>
</tr>
<tr>
<td>3 = West Pacific 3 versus 1</td>
<td>1.59</td>
<td>0.86</td>
<td>0.37</td>
<td>0.41</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>0.77-3.26</td>
<td>0.45-1.68</td>
<td>0.20-0.71</td>
<td>0.22-0.74</td>
<td>0.11-0.49</td>
</tr>
<tr>
<td>4 = North Atlantic 4 versus 1</td>
<td>1.76</td>
<td>0.89</td>
<td>0.58</td>
<td>1.36</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td>0.77-4.05</td>
<td>0.39-2.03</td>
<td>0.27-1.23</td>
<td>0.61-3.02</td>
<td>0.84-3.63</td>
</tr>
<tr>
<td>5 = Central 5 versus 1</td>
<td>0.80</td>
<td>0.60</td>
<td>0.47</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>0.38-1.71</td>
<td>0.33-1.11</td>
<td>0.26-0.84</td>
<td>0.20-0.62</td>
<td>0.19-0.66</td>
</tr>
<tr>
<td>Diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 = healthy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 = chronic 1 versus 0</td>
<td>2.95</td>
<td>10.16</td>
<td>66.71</td>
<td>6.13</td>
<td>4.35</td>
</tr>
<tr>
<td></td>
<td>0.71-12.30</td>
<td>3.39-30.50</td>
<td>12.64-341.50</td>
<td>2.21-17.00</td>
<td>1.21-15.65</td>
</tr>
<tr>
<td>2 = aggressive 2 versus 0</td>
<td>6.40</td>
<td>4.95</td>
<td>59.43</td>
<td>5.50</td>
<td>4.68</td>
</tr>
<tr>
<td></td>
<td>1.77-11.6</td>
<td>3.15-28.37</td>
<td>11.28-31.33</td>
<td>1.95-15.51</td>
<td>1.27-17.22</td>
</tr>
<tr>
<td>PD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 = ≤3 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 = >3 to <5 mm 1 versus 0</td>
<td>1.96</td>
<td>1.73</td>
<td>1.26</td>
<td>0.74</td>
<td>1.60</td>
</tr>
<tr>
<td></td>
<td>0.90-4.30</td>
<td>0.95-3.14</td>
<td>0.71-2.24</td>
<td>0.41-1.32</td>
<td>0.84-3.05</td>
</tr>
<tr>
<td>2 = ≥5 mm 2 versus 0</td>
<td>6.50</td>
<td>2.81</td>
<td>1.19</td>
<td>1.36</td>
<td>2.14</td>
</tr>
<tr>
<td></td>
<td>1.86-22.61</td>
<td>0.98-8.10</td>
<td>0.44-3.22</td>
<td>0.49-3.78</td>
<td>0.76-6.02</td>
</tr>
<tr>
<td>CAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 = ≤2 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 = >2 to <5 mm 2 versus 0</td>
<td>0.19</td>
<td>1.95</td>
<td>0.75</td>
<td>1.65</td>
<td>1.32</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>0.58-1.23</td>
<td>0.31-3.50</td>
<td>0.15-3.76</td>
<td>0.54-5.10</td>
</tr>
</tbody>
</table>

Aa = A. actinomycetemcomitans; Pg = P. gingivalis; Tf = T. forsythensis; Cr = C. rectus; Ec = E. corrodens.
P values derived from the \(\chi^2\)/Fisher exact test.
* \(P < 0.0001\).
† \(P < 0.05\).
‡ \(P < 0.10\).
Alpagot et al. reported differences among African-Americans, Native Americans, and Asians regarding age, race, and smoking status. In Colombia, the subgingival flora were not associated with the geographic region; however, the microbiota may vary by geographic regions. This finding indicated that existing regional factors, in addition to the ones already studied, may have an effect on the composition of the subgingival microflora. Lifestyle factors, such as diet, frequency of dental visits, access to health services, consumption and self-medication of antimicrobials, and water sanitation, should be studied to establish their influence on the differences observed.

CONCLUSIONS

The microbial component in patients with periodontitis in Colombia showed high levels of P. gingivalis, T. forsythensis, and E. corrodens. A. actinomycetemcomitans was lower in the population with periodontitis, and it was associated with the aggressive form. The geographic region did not influence the microbiota; however, the microbiota may vary by geographic regions. A great proportion of individuals with and without periodontitis or with varying degrees of inflammation had enteric rods in the subgingival plaque.

ACKNOWLEDGMENTS

This study was funded by the Colombian Institute of Science and Technology "Francisco José de Caldas" COLCIENCIAS (grant 1308-04-13001). The authors thank the Colombian Dental School Association for funding the calibration workshop; Dr. Marisol Tellez, El Bosque University School of Dentistry, for conducting the statistical analyses; and Dr. Blanca Nieves Ruiz and Senobia Buriticá, laboratory assistants from El Bosque University Basic Oral Research Unit Institute and Valle University Periodontal Medicine Group, respectively, for their assistance with laboratory procedures. Finally, the authors thank the deans and research Chairs of participating schools for their support.

REFERENCES

23. III National Study on Oral Health. II National Study of risk
factors in chronic disease. Publication no. 7. Bogotá,
Colombia: Colombian Republic Ministry of Health; 1999:
104-113.
24. Alpagot T, Wolff LF, Smith QT, Tran SD. Risk indica-
tors for periodontal disease in a racially diverse urban
25. Sirinian G, Shimizu T, Sugar C, Slots J, Chen C. Peri-
odontopathic bacteria in young healthy subjects of dif-
ferent ethnic backgrounds in Los Angeles. J Periodontol
26. Armitage GC. Development of a classification system
for periodontal diseases and conditions. Ann Peri-
27. Department for District Planning. Bogota’s Majors
Office, Certificates on Stratification (in Spanish). Avail-
28. Ashimoto A, Chen C, Bakker I, Slots J. Polymerase
chain reaction detection of 8 putative periodontal patho-
gen in subgingival plaque of gingivitis and advanced
periodontitis lesions. Oral Microbiol Immunol 1996;11:
266-273.
enzymatic amplification of DNA with a thermostable
30. Dzink JL, Tanner AC, Haffajee AD, Sohransky SS.
Gram negative species associated with active destruc-
648-659.
31. Haffajee AD, Sohransky SS, Smith C, Dibart S. Relation
of baseline microbial parameters to future periodontal
32. van Winkelhoff AJ, Loos BG, van der Reijden WA, van
de Velden U. Porphyromonas gingivalis, Bacteroides
for sythus and other putative periodontal pathogens
in subjects with and without periodontal destruction.
33. Dahlen G, Manji F, Baelum V, Fejerskov O. Black
pigmented Bacteroides species and Actinobacillus
actinomycetemcomitans in subgingival plaque of adult
34. Dahlen GG, Luan WM, Baelum V, Fejerskov O, Chen
X. Periodontopathogens in elderly Chinese with differ-
ent periodontal disease experience. J Clin Periodontol
35. Hamlet SM, Cullinan MP, Westerman B, et al. Distribu-
tion of Actinobacillus actinomycetemcomitans, Por-
phyromonas gingivalis and Prevotella intermedia in
an Australian population. J Clin Periodontol 2001;28:
1163-1171.
36. Kojima T, Yasui S, Ishikawa I. Distribution of Por-
phyromonas gingivalis in adult periodontitis patients.
J Periodontol 1993;64:1231-1237.
37. Wahlfors J, Meurman JH, Vaisanen P, et al. Simulta-
neous detection of A. actinomycetemcomitans and
P. gingivalis by a rapid PCR method. J Dent Res
1995;74:1796-1801.
38. Riggi MP, MacFarlane TW, Mackenzie D, Lennon A,
Smith AJ, Kinane D. Comparison of polymerase chain
reaction and culture methods for detection of A. actino-
mycetemcomitans and P. gingivalis in subgingival
I. Prevalence of periodontopathic bacteria in aggres-
sive periodontitis patients in a Japanese population.
40. Kamma JJ, Nakou M, Manti FA. Microbiota of rap-
idly progressive periodontitis lesions in association
with clinical parameters. J Periodontol 1994;65:1073-
1078.
41. Rosenberg ES, Torosian JP, Hammond BF, Cutler SA.
Routine anaerobic bacterial culture and systemic an-
tibiotic usage in the treatment of adult periodontitis: A
6-year longitudinal study. Int J Periodontics Restora-
42. Gainet J, Dang PM, Chollet-Martin S. Neutrophil dys-
functions, IL-8, and soluble L- selectin plasma levels in
rapidly progressive versus adult and localized ju-
venile periodontitis: Variations according to disease
severity and microbial flora. J Immunol 1999;163:
5013-5019.
43. López NJ. Occurrence of A. actinomycetemcomitans,
P. gingivalis and P. intermedia in aggressive periodont-
periodontopathic bacteria in aggressive periodontitis
patients in a Chilean population. J Periodontol
45. Missalidis CG, Umeda JE, Ota-Tsuzuki C, Anzai D,
Mayer MP. Distribution of fimA genotypes of Porphy-
romonas gingivalis in subjects with various peri-
don tal conditions. Oral Microbiol Immunol 2004;19:
224-229.
46. Colombo AP, Teles RP, Torres MC, et al. Subgingival
microbiota of Brazilian subjects with untreated chronic
47. Lotufo RF, Flynn J, Chen C, Slots J. Molecular detect-
ion of Bacteroides forsythus in human periodontitis.
48. Buduneli N, Baylas H, Buduneli E, Turkoglu O, Kose
T, Dahlen G. Periodontal infections and pre-term low
mediates growth restriction in pregnant mice. J Peri-
50. Offenbacher S, Riche EL, Barros SP, Bobetis YA, Lin
D, Beck JD. Effects of maternal Campylobacter rectus
infection on murine placenta, fetal and neonatal sur-
vival, and brain development. J Periodontol 2005;76
(11 Suppl.):2133-2143.
51. Yano Higuchi K, Takamatsu N, He T, Umeda M,
Ishikawa I. Prevalence of B. forsythus, P. gingivalis
and A. actinomycetemcomitans in subgingival micro-
flora of Japanese patients with adult and rapidly
progressive periodontitis. J Clin Periodontol 2000;27:
597-602.
52. Savitt ED, Kent RL. Distribution of A. actinomyceto-
comitans and P. gingivalis by subject age. J Periodon-
53. Asikainen S, Jousimies-Somer H, Kanervo A, Saxen
L, A. actinomycetemcomitans and clinical periodontal
status in Finnish juvenile periodontitis patients. J Peri-
donotol 1995;67:91-93.
RJ, Abbas F, de Graaff J. Occurrence of Bacteroides
gingivalis, Bacteroides intermedius, and Actinobacil-
lus pigmented in severe periodontitis in
 progressively versus adult and localized ju-
venile periodontitis: Variations according to disease
severity and microbial flora. J Immunol 1999;163:
5013-5019.
55. Tan KS, Woo CH, Ong G, Song KP. Prevalence of
A. actinomycetemcomitans in an ethnic adult Chinese

Correspondence: Dr. Gloria Lafaurie, Transversal 9 A Bis No. 133-55, Universidad el Bosque, Facultad de Odontología, Bogotá, Colombia. Fax: 57-1-635-3713; e-mail: investigaciones.odontologia@unbosque.edu.co.

Accepted for publication October 17, 2006.